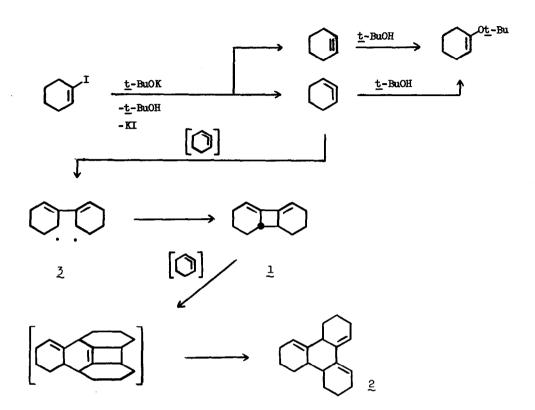
ROLE OF ADDED DI-<u>T</u>-BUTYLNITROXIDE IN REACTIONS OF 1-IODOCYCLOHEXENES WITH FOTASSIUM <u>T</u>-BUTOXIDE IN DIMETHYL SULFOXIDE: TRAPPING OF INTERMEDIATE DIRADICALS A. T. Bottini* and L. J. Cabral

Department of Chemistry, University of California, Davis, California 95616

Vasu Dev

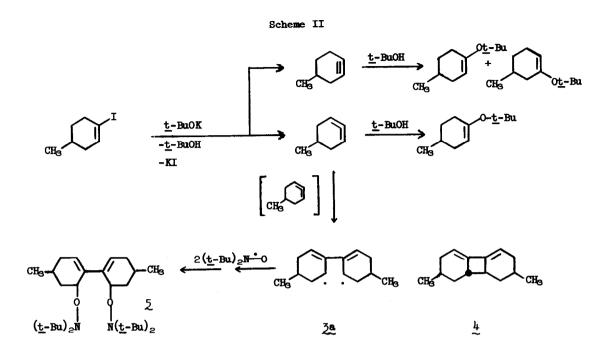
Department of Chemistry, California State Polytechnic University, Pomona, California 91768

(Received in USA 3 November 1976; received in UK for publication 14 January 1977) The reaction of 1-iodocyclohexene with t-BuOK:t-BuOH in DMSO at 65° gives a 10% yield of 1-t-butoxycyclohexene and a 32% yield of trans-tricyclo[6.4.0.0²,⁷]2,12-dodecadiene 1 together with small amounts of C₆ hydrocarbons and 3 other C₁₂ hydrocarbons isomeric with 1.¹ Our further examination of this reaction has revealed that the C₁₈ hydrocarbon 2² is also formed in 25% yield. From study of the reactions of isotopically labeled 1-iodocyclohexenes,¹ it was concluded that the ether is formed in nearly equal amounts by addition of the elements of t-BuOH to the transitory intermediates 1,2-cyclohexadiene and cyclohexyne, and that 1 is formed by dimerization of the 1,2-cyclohexadiene formed directly by dehydroiodination of the iodide. When the course of the reaction of 1-iodocyclohexene with t-BuOK:t-BuOH in DMSO was followed closely by glpc up to 250°, it was observed that 2 appears in significant concentration only after an appreciable concentration of dimer 1 is reached, and then the concentration of 2 increases much more rapidly than that of 1. This indicates that 2 is formed from 1 and 1,2-cyclohexadiene, possibly by a [4 + 2]cycloaddition to give an unstable cyclobutene, which undergoes electrocyclic ring opening to 2.


Compound 1 has also been prepared by reactions of the other 1-halocyclohexenes with \underline{t} -BuOK,¹,³ by treatment of 1,6-dibromo-⁴ or 1,6-dichlorocyclohexene^{5,6} with magnesium, and by treatment of 6,6-dibromobicyclo[3.1.0] hexene with methyllithium.⁷ From their study of the temperature dependence of the course of this last reaction, Moore and Moser concluded that formation of 1 from 1,2-cyclohexadiene occurs <u>via</u> the intermediacy of the <u>bis</u>-allylic diradical \underline{z} .

The pertinent reactions noted above are summarized in Scheme I.

A mixture prepared by the successive addition of 7.4 g (66 mmole) of <u>t</u>-BuOK, 4.9 g (66 mmole) of <u>t</u>-BuOH, 8.6 g (60 mmole) of di-<u>t</u>-butylnitroxide,⁸ and 12.5 g (60 mmole) of l-iodocyclohexene to 60 ml of DMSO, on heating at 60°,¹ gave the characteristic mixture of C₆ hydrocarbons¹ and 0.95 g (10%) of l-<u>t</u>-butoxycyclohexene. However, the reaction gave no trace of <u>1</u>, the other C₁₂ hydrocarbons, or <u>2</u>. Significantly, glpc of the residual material from the reaction $(bp > 90^{\circ}/0.5 \text{ mm})$ gave several large volatile product peaks, including one corresponding to di-<u>t</u>-butylnitroxide.


In the absence of di-<u>t</u>-butylnitroxide, 1-iodo-4-methylcyclohexene and <u>t</u>-BuOK:<u>t</u>-BuOH in DMSO gives a <u>ca</u> 15% yield of a 3:1 mixture of 1-<u>t</u>-butoxy-4-methyl- and 5-methylcyclohexene¹ and a 30% yield of $\frac{1}{2}$, ¹⁰ the dimer of 5-methyl-1,2-cyclohexadiene corresponding to 1,together with small amounts of incompletely characterized C₇ and other C₁₄ hydrocarbons. Examination of the residual material by glpc showed that the reaction also gives at least 3 higher molecular weight

products, in relative amounts of 4:1:1, whose glpc behavior is consistent with what would be expected of methyl-substituted analogs of 2. The rate of formation of these products, relative to that of $\frac{1}{2}$, is similar to that observed for the rates of formation of 2 and 1. Their yield, estimated by glpc, is ca 25%.

A mixture prepared by the successive addition of 3.8 g (33 mmole) of <u>t</u>-BuOK, 2.43 g (33 mmole) of <u>t</u>-BuOH, 4.32 g (30 mmole) of di-<u>t</u>-butylnitroxide, and 6.7 g (30 mmole) of l-iodo-4methylcyclohexene to 60 ml of DMSO, on heating at 60° for 5 hr., gave a 2.17-g fraction with bp $30^{\circ}/40$ mm- $60^{\circ}/1$ mm, which consisted of C₇ hydrocarbons, <u>t</u>-BuOH, di-<u>t</u>-butylnitroxide, and 0.51 g (10%) of an 82:18 mixture of 1-<u>t</u>-butoxy-4-methyl- and 5-methylcyclohexene, and a 3.6-g residue. Examination of this residue by glpc failed to detect a trace of <u>4</u> or the other presumed C₁₄ and C₂₁ hydrocarbons but gave several large volatile product peaks. Chromatography of the residue on basic alumina with pentane as eluent gave 2.7 g of white, crystalline material. The first 2.0 g eluted had mp 113-118°, which was raised to 120-122° after 2 recrystallizations from MeOH: ether. Analytical and spectral data for this product indicated that it is one or more of the possible diastereomers of 5. [M wt. 505 ± 30 by osmometry in CH₂Cl₂ (C₃OH₅ON₂O₂ requires 476.8). C, 75.20; H, 11.95; N, 5.82 (Calc. C, 75.57; H, 11.84; N, 5.82). Nmm (CCl₄), δ 5.32 (W_{1/2} = 9 Hz, 1 H), 4.80 (W_{1/2} = 16 Hz, 1 H), and 0.85-2.30 ppm (m, with intense s at δ 1.05 and 1.19 ppm, 27 ± 1 H).¹¹]. Our interpretation of these results is shown in Scheme II.

That di-<u>t</u>-butylnitroxide undergoes no significant reaction with 5-methyl-1,2-cyclohexadiene is shown by the yield and <u>composition</u> of the <u>t</u>-butoxycyclohexenes. If such a reaction were of significance, the ratio of 1-<u>t</u>-butoxy-4-methylcyclohexene to 1-<u>t</u>-butoxy-5-methylcyclohexene would have decreased toward 1:1 from the <u>ca</u> 3:1 ratio observed in the absence of the nitroxide. Therefore, the nitroxide must intercept another intermediate in the reaction sequence leading to $\frac{1}{4}$, and the diradical $\frac{1}{24}$ is clearly implicated. Thus, the rate of reaction of $\frac{1}{24}$ and di-<u>t</u>butylnitroxide must be greater than the rate of cyclization of $\frac{1}{24}$.

Our results also indicate that di-t-butylnitroxide also intercepts intermediates that lead to the [2 + 2] and [4 + 2]cycloaddition products of 1,2- and 1,3-cyclohexadiene^{1,6} (and their corresponding dimethyl homologs). Di-t-butylnitroxide appears to have considerable value as an aid in distinguishing between stepwise and concerted cycloaddition reactions.

References and Notes

¹ A.T. Bottini, F.P. Corson, R. Fitzgerald, and K.A. Frost Jr., <u>Tetrahedron 28</u>, 4883 (1972).
² Compound 2 was isolated as a colorless oil by prep glpc at 200° using a 5′ x 3/8″ Carbowax 20M on 30/60 Chromosorb W Column. M. wt. 240.4 (ms). C, 89.87; H, 9.91 (C₁₈H₂₄ requires C, 89.94; H, 10.06). Nmr (CCl₄), 8 5.0 - 5.4 (m, 3 H), 1.83 - 3.0 (m, 9 H), and 1.15 - 1.8 ppm (m, 12 H).

³ G. Wittig and P. Fritz, <u>Angew. Chem.</u> <u>7</u>8, 905 (1965); <u>Liebigs. Ann</u>. <u>711</u>, 82 (1968).

- ⁴ F.M. Boyden, Ph.D. Dissertation, University of the Pacific, Stockton, California (1969).
- ⁵ R. Fitzgerald, Ph.D. Dissertation, University of California, Davis (1971).
- ⁶ A.T. Bottini, L.L. Hilton, and J. Plott, <u>Tetrahedron 31</u>, 1997 (1975).

⁷ W.R. Moore and W.R. Moser, <u>J. Amer. Chem. Soc</u>. <u>92</u>, 5469 (1970).

- ⁸ A.K. Hoffman, A.M. Feldman, E. Geldblum, and A.W. Hodgson, <u>ibid</u>. <u>86</u>, 639 (1964).
- ⁹ A mixture of 2.2 g of <u>t</u>-BuOK, 1.5 g of <u>t</u>-BuOH, 3.3 g of l-iodo-4-methylcyclohexene, and 33 ml of DMSO was heated at 60° until the reaction was complete. To a 2-ml aliquot was added 1 ml of DMSO; to a second 2-ml aliquot was added 1 ml of di-<u>t</u>-butylnitroxide. These mixtures were heated at 60° for 2 days and examined periodically by glpc under conditions that clearly allowed detection and estimation of the relative amounts of the various products, including the 3 presumed C_{21} hydrocarbons. Comparison of the chromatograms obtained for the 2 samples showed that the relative composition of the various products was unaffected by the added di-t-butylnitroxide.
- ¹⁰ A purified sample of 4, as an oil, was obtained by prep glpc on Carbowax 20M. M. wt. (ms), 180.3. C, 88.94; H, 10.80 (C₁₄H₂₀ requires C, 89.29; H, 10.71). Nmr (CCl₄), 6 5.20 (W_{1/2} = 8 Hz, 2 H), 0.80 2.45 ppm (m, with d, J = 6 Hz, at § 0.96 ppm, 18 H).
- ¹¹ The nmr spectra of the crude material and of the material obtained on successive recrystallizations were very similar, but noteworthy changes were observed in the <u>t</u>-butyl region. The δ 1.19 ppm peak had a greater height than the δ 1.05 ppm peak in the spectrum of the crude sample, and it also had a significant shoulder at δ 1.16 ppm. Recrystallization resulted in substantial reduction of the intensity of the shoulder and a lowering of the height of the δ 1.19 ppm peak to 90% of the height of the δ 1.05 ppm peak. The mass spectrum of 5 was very complex with an intense peak at m/e of 144 (<u>t</u>-Bu₂NO).